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The biochemical machinery of living systems obeys kinetic laws, but is driven 
by Gibbs function flows. Both the kinetic and thermodynamic aspects of Gibbs 
gain, transmission, and utilization are considered. An information-theoretic 
approach is used to find conditions under which the kinetics encodes the 
associated Gibbs function flow with the lowest possible error. 
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1. I N T R O D U C T I O N  

In the past few decades, information theory (IT) has been successfully used 
in a growing number of  research fields, ranging from physical systems of  
particles to systems involving social relations. Thus, there are books applying 
the IT approach to statistical mechanics (t'2) and thermodynamics. (3'*) There 
are applications of IT to the liquid state (5'6) and also to predictions of the 
future market price of  a stock. (7) Advantages of  the IT approach to 
physical as well as nonphysical problems have been reviewed. (s) There are 
also papers discussing general properties of  information measures, (9) leading, 
for instance, to a new notion of  information distance. (1~ 

This paper presents an application of  IT to a study of  Gibbs function 
flows in living systems. In steady states, most of  these systems and their 
subsystems operate at constant temperature and pressure; they cannot use 
heat as an energy source (see Ref. 11, pp. 374 and 390). It is the change 
of the Gibbs function of cellular fuels that predicts the direction of  chemical 
reactions proceeding in living systems. ('t) The Gibbs flows are thus indis- 
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pensable for the creation and maintenance of organization in living systems, 
both in space and in time. A key position in the energetics of living systems 
belongs to so-called nucleotide pools. In the present paper we consider the 
problem of the degree to which kinetic quantities characterize, or encode, the 
associated Gibbs flow from a nucleotide pool. Exact solutions can be found by 
Jaynes' principle, but living systems can use only a subset of  them, associated 
with special states only. Generally, then, approximate solutions can be found 
by minimizing the average error caused by the deviation from an exact code. 

In the next section the problem is formulated in detail. The solutions 
are presented in Section 3. A brief summary and discussion form Section 4. 

2. F O R M U L A T I O N  OF THE P R O B L E M  

Nucleotide pools are essential for an understanding of processes in which 
living systems gain, transform, and utilize the Gibbs function. Apart from the 
different degrees of ionization and from the formation of complexes with 
metal ions, a pool consists of three kinds of species: nucleoside mono-, di-, 
and triphosphates. A pool receives the Gibbs function from a source and 
distributes it to many reactions of diverse character. However, if only the 
nucleotides are considered, reactions splitting triphosphates into either di- or 
monophosphates emerge as the two most important types of processes. 
In terms of a communication chain, the driven processes coupled to the 
o u t p u t o f  a nucleotide pool comprise a channel. The pool itself acts as a 
transducer, coding the output of a Gibbs function source in order to enable 
proper Gibbs function transmission through that channel. We define 
"coding"  and "proper  transmission" for the Gibbs function below. 

Consider a system composed of Nl solvent molecules and a set of {Ns} 
solute molecules. The chemical potential Ps of  any solute component is  t~2) 

/~s fi~ log V 
k T  - k T  N + log '/s + log n S (1) 

Only ~i s does not depend on the composition of the system. The remaining 
three terms on the rhs do, since the ns are molar fractions: 

us N = N, + ~ Ns (2a) 
N 

n S < 1 (2b) 

The ~s are the activity coefficients, introduced because the system contains 
different ionic species of various strengths. The total volume V of the 
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system is a sum of molecular volumes: 

V=N~V~+yN~V~ 

The composition dependence of V/N in (1) may often be neglected. For the 
nucleotides of the pool under consideration, the respective quantities will be 
indexed by i = M, D, T (for mono-, di-, and triphosphates, respectively). 

Let us consider a stationary state of the living system and of the pool; 
the latter is characterized by the sets  {#I 1)} and {nl 1)} and by the rates of 
the corresponding reactions. Let the system as a whole and the pool as part 
of it evolve to another stationary state, with {p12)}, {n~2)}, and another set 
of the rates. The transition from state 1 to state 2 reflects the fact that the 
Gibbs function flow through the pool has been varied. Accordingly, as the 
rates of some (or all) chemical reactions have had to change as well, the 
chemical composition of the system in state 1 generally differs from that in 
state 2. It has already been mentioned that it is the Gibbs function source 
and hence the Gibbs flow that control the performance of the system. In 
particular, the rates of the most important processes (for example, the 
synthesis of certain macromolecules) should sensitively respond to the Gibbs 
function resources available to the system. However, the rates of processes 
in the system directly respond to and are regulated by concentrations; 
chemical potentials and hence the Gibbs function cannot be immediately 
involved. If  the system were an ideal one, no problem would arise : the terms 
containing the activity coefficients [see (1)] would vanish, and there would 
be an unambiguous correspondence between chemical potentials and molar 
fractions, that is, ultimately, concentrations. The system is not ideal, however, 
hence there is no unique correspondence of that kind; yet the rates of 
processes proceeding in the system should concur with the thermodynamic 
conditions under which the system operates. An effective response between 
the kinetics and thermodynamics of the system requires the existence of a 
relation between concentrations and chemical potentials, to circumvent the 
difficulty with the activity coefficients, which cannot be directly involved in 
regulation. Considering the two states of the system, we therefore ask: 
Under what conditions do changes in rates and concentrations provide 
information about changes in the Gibbs function flow? Or, less strictly, to 
what degree is that (necessarily incomplete) information reliable? In terms 
of coding, we ask for the conditions under which changes in rates and 
concentrations encode variations in Gibbs function flow, and how good the 
codes are. 

This problem is probably unsolvable in its full generality, but it can be 
solved for the Gibbs function output from a nucleotide pool. Two features 
make this possible: the central position of nucleotide pools in the energetics 
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of the system and the structure of a pool. A nucleoside triphosphate can be 
split in two ways, each of which offers the possibility for coupling to a 
large number of particular processes. Any complete reaction involving the 
nucleotides of the pool in question thus occurs at random; then information 
theory can be used to find useful extremum conditions for the performance 
of the pool. 

Up to this point, in speaking of information provided by concentrations 
and reaction rates, we of course have had in mind the common meaning of this 
word, rather than any of the information measures used in probability theory. 
In fact, one of these measures will be introduced for the nucleotide con- 
centrations by formula (1). 

3. C O D I N G  

The transition from state 1 to state 2 is accompanied by a change 
A#i = / ~  - pl I), which may be expressed in the form 

A#i - Alog V ?I z) nl 2) A i nl 2) 
k T  N + log ~ + log nl,~ = k T  + log nl,~ (3) 

We define c~ i by the expression 

c h = 1 - Ai/AI~ i (4) 

so that 

n} 2) A#i -- A i A#i 
log nll)  -- k T  - ~i k T  (5) 

Let us consider a reaction involving at least one nucleotide species from 
a pool, for example, the reaction 

T. + B ~  D + C (6) 

where T. and D denote the nucleoside triphosphate and diphosphate, 
respectively, B denotes all substrates other than T. ,  and C denotes all 
products other than D. Its affinity is 

Aj = -(/~o + Pc - #T -- ~B) 

and the associated thermodynamic entropy production is 

crj = v j A j / T  

The expression v j A j  may be regarded as a Gibbs function flow from the 
pool to the chemical subsystem (C, B). A transition from state 1 to state 2 
corresponds to the differences A A j  and Aaj. If we choose as the reference 
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state that one in which the rate and affinity vanish, we may write 

Aa~ v AAi I A P T ? / P D  A(p pB)l 

nD ] AAjr 
[- 1 n T 1 1Ogn~05D ~ _ Vj 

= Uj~T log n~STO) O~D k T 

The subscript 0 represents the reference state. We sum all similar equalities 
(assuming a common state 0 for all reactions) and obtain for the total entropy 
production associated with the pool output the expression 

- ApT -- ApM Ao- APl ApT APD -~- /~TM 
--k- = y" v i ' ~  + VTD k T k T 

i 

ApD - A#M AAjr 
+ VDM kT ~ vj ~ -  

J 

AAir 
: + + - 

J 

_ VT log nT + V~oolOg nD UM H M ~ AAjr - ( 7 )  

aM '~ " k T 

Here the vi' are the total rates of  deletion from the pool [for reactions of  this 
type, the lhs of  (6) contains the ith nucleotide, other species do not belong 
to the pool], Vxv are the total rates of reactions with X in the lhs of (6) 
and Y in the opposite side, and vi (i = M, D, T) are self-evident com- 
binations of v i' and Vxv. 

State 0 is now defined as that in which both the rates and the affinities 
of all contributing reactions vanish. It therefore reflects the kinetic and 
thermodynamic properties of  the entire system to which the pool belongs. 

The molar fractions of  the nucleotides represent an incomplete distri- 
bution. Then each term 

log (ndnl ~ 

is a quantity called gain of  information/TM From (5) and (7) we see that, 
generally, the three separate gains of information provide no common 
measure of the corresponding differences Api and therefore only incompletely 
characterize that part of  Aa (or of  vjAA) which is related to the pool. 
We may say that each nucleotide has its own code, and that the pool 
as a whole has no common code: while an individual code of a particular 
nucleotide establishes a relation between Api and the corresponding 
log(nJn~m), it does not convey information on analogous relations concerned 
with the other two kinds of nucleotides. Moreover, with respect to valid 
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thermodynamic conditions, the estimates provided by the individual nucleo- 
tides differ from each other. A reliable estimate would require rather 
sophisticated evaluation of information from all three kinds of nucleotides. 
Consider, however, the case when ~M = ~D = aT = 2. Not only is there 
such a common code for the pool, so that the differences 

log ~n(~v~ 5 - l o g ~ ,  i =  M , D  

are proportional to A/aT -- A#i, but also [see (7)] the expression 

~ v/log n~ ) (8) 

measures one part (that related to the pool itself) of the Gibbs function 
flow or the associated part of the entropy production. An individual code now 
provides information on any of the three kinds of nucleotides. The 
regulating mechanisms then can have the simplest design: valid thermo- 
dynamic conditions are reflected equally well by any one of the three 
nucleotides. In contrast with the preceding case, a single estimate of thermo- 
dynamic conditions is sufficient. In other words, if there is a common c~, 
the distribution {nl} is the least prejudiced one with respect to the set 
{A/ti} and relative to {nl~ Both distributions together then define a common 
code for the differences Api. We shall also denote it as an exact code. 

This consideration and relation (5) suggest that the least prejudiced 
distribution {n~} satisfies Jaynes' principleJ x4) Originally, this principle 
was formulated for problems involving a single probability distribution. 
Here we consider two states; we therefore have two distributions. For this 
reason, we use a slightly generalized form of the principle, requiring essentially 
the minimum of the path function 

~ ,  n i log ~ (9) 
i i 

subject to the constraint that a measurable quantity is given. The constraint 
must express those characteristics of the system that are relevant to the 
problem. According to how our problem has been posed, the Gibbs function 
difference between the two states of the pool should be considered as given 
and used as the constraint. 

We first define the distributions {p} and {p~O)} by the relations 

n~ 
Pi = --, y. pl = 1, i = M, D, T (10a) 

n i 

p(O) _ nl ~ 
, - y ,  p l  : 1, i = M ,  D ,  T ( l O b )  

i 
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We will suppose that 

. = X ni = Z"l ~ -- O0c) 
i i 

Then the modified Jaynes' principle requires for j = M, D, T that 

p~ log -?65 -~  p~ - - - - ( f 2 + l )  p i - 1  = 0  (11) 
c3p j lJi k T 

where AG, denotes the difference of the Gibbs function per nucleotide. The 
solutions of (11) yield the distributions {p} satisfying the requirement of exact 
coding. We shall denote these solutions as mathematically defined exact 
(or common) codes. 

Now, from the discussion on the difference between the individual codes 
and a common code it is clear that exact codes correspond to special situations 
and therefore must be established by some mechanism. Its design may leave 
many (or even most) mathematically defined exact solutions unused, being 
capable of adjusting only a certain subset of the common codes. As a matter 
of  fact, in living systems there exists a simple and nearly ubiquitous reaction 
which can be shown ~1 s) to define sufficient conditions for exact codes to exist; 
they are concerned with equilibrium states of that reaction. We will suppose 
that this reaction serves as that mechanism necessary for the adjustment of 
exact codes. This assumption may seem only weakly justified; however, we 
will show that a meaningful extremum condition defines the equilibrium states 
of  that reaction. It is this remarkable feature that supports our assumption 
concerning that reaction and tempts us to regard its equilibrium states as 
the only ones in living systems in which exact codes can be adjusted. If 
necessary, such codes will be denoted as the operationally defined common 
codes, to distinguish them as a subset of  the mathematically defined ones. 

To see what states then allow exact coding operationally, let us define 
the function 

:- +.., (12) 

For  the mathematical exact codes, this function is the informational image 
of the quantity 

It is easy to show the meaning of these functions. A diphosphate has one 
free site for a phosphoryl group, a monophosphate has two. Their total 
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fraction in the pool is 2pM + PD- However, of the two sites of a mono- 
phosphate, only that next to the monophosphate moiety is a real free site, 
since the other cannot be filled unless the first one is occupied. Then 
PD/(2PM +PD) and pM/(2pM +PD) are the fractions of free sites per 
phosphoryl .group that can be attached to the pool. Since A#T -- A#i are 
the relevant differences of chemical potentials, it is clear that 9 in (13) is 
their average per phosphoryl group; then f in (12) is the average difference 
of  relevant information gains, again per phosphoryl group. All differences 
are measured with respect to the triphosphate related quantities. Let us now 
keep {p~O )} fixed and look for the conditions under wh ich f i s  an extremum. 
We obtain readily 

K (2pM+po K )  
6pD.(1--pT) l O g ~ = - - f p v . \ -  p- x + p D 1 o g ~ 5  (14) 

where 

K = pTpM/pl:, 2 (15) 

and similarly for K ~~ Relation (14) implies that K = K (~ is equivalent to 
3pT = 0. This defines the point of minimum PT on the curve f = const. 
Also, if we look for an extremum of  f at fixed PT, we obtain maximum 
f f o r  K = K ~~ Provided that exact coding applies, that is, by (5) and (10), 

log (pi/pl ~ = ~z A#~/k T (16) 

the condition K = K (~ also means 

A/~ T + A# M - 2A#D = 0 (17) 

Extremum points of the function f (and, since we assume exact coding, also 
of 9) thus coincide with equilibrium states of the reaction 

2D ~- T,  + M (18) 

where M, D, and T, denote the nucleoside mono-, di-, and triphosphate, 
respectively. Reaction (18) is just what we had in mind when speaking of the 
mechanism capable of adjusting exact codes, including the fact that (17) and 
K = K (~ are sufficient conditions {ls) for a subset of exact codes to exist. 

For other states, then, operationally defined exact solutions of (11) do 
not exist. In practice, however, approximate solutions may suffice. Of course, 
they introduce some error; it can be expected that in exacting situations 
it is desirable or even necessary to keep this error as low as possible. In 
the following, we suggest an appropriate approximation and investigate the 
error introduced. 

If  for a distribution exact codes are defined operationally, we shall 
denote it as {p~)} and the state itself as state 1. Therefore we may write 
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the condition of operationally defined exact coding in the form 

log(pll)/plO) ) = ~(1-o)Al~ll.O)/kT (19) 

For distributions {p} different from {p(X)}, no relation like (19) is defined 
operationally; perhaps the simplest approximation is to require that a similar 
relation be valid in the mean: 

Pi = Api 
I = . Pi log~5.  ~ Zi Pi k T  (20) 

Note that the overall information gain I has been used in the minimizing 
condition (11). We use (19) to define 

D(1) 
I~'-~ -- E Pl 1) log ~o, (21) 

i P i  

We also introduce the function I") :  

1~') = ~ p, l o g ~ )  (22) 

This information measure depends on the actual distribution {p} involved 
in the approximation (20), and on {p(1)} involved in exact coding. It therefore 
measures the error introduced by that approximation; however, this state- 
ment needs additional explanation. In fact, I -  I (~~ generally is not equal 
to I ~1), since we obtain 

pl x) 
I - 1 (1-~ = 1 (1) + •i (Pi - Pl 1)) log ~bS (23) 

In this form, the difference I -  1 (1"~ does not measure the error, because it 
has not been specified which of the states 1 should be used; without a 
precise specification, the expression (23) even can be negative, in contrast 
to the essential nonnegativity of any error measure. The requirement I = 1 (1~ 
seems to be the optimum case, but it is not: it introduces a functional 
dependence among the three distributions, calling thus for an adjusting 
mechanism and restricting the choice of admissible actual states. Fortunately, 
it is possible to avoid these difficulties by setting the second term on the 
rhs of (23) equal to zero. The condition (19) for exact coding and the 
equilibrium condition (17) then yield the relation 

2E = 2pv + PD = 2P~ 1) + P~) = 2E~1) (24) 

where the first and last equalities are definitions of the quantities E and 
E (1) (often used in biology to characterize the status of the system under 
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study). For fixed {p} and {p(O)}, condition (24) and 

K (1) = K (~ (25) 

define {p(l)} uniquely [we recall that (25) appeared in the extremizing 
condition (14) for the function f ] .  The rhs of (23) now consists only of 
1 (1) and measures the error. It can be shown that the special choice (24) 
implies that I (*~ is a minimum, the corresponding condition being satisfied 
trivially. In fact, varying {p(1)} along the line K (l) = const, we obtain from 

3(1)1(') = - ~  Pi a(log pl 1)) (26) 
i 

the relation 

3(1)1(1) (2PM +PD) _(1) = 6(lo8 ~,M ) + (2pv + PD) 6(log p~t)) (27) 

On substituting from (24), we can rearrange (27) to the form 

p~) 6(log p}l)) = ~ @11) = 0 (28) 
i i 

which is true trivially. It is easily seen that the extremum of/( t)  is a minimum. 
Inversely, requiring that (27) vanish trivially, as in (28), we should have to 
choose {p(1)} so as to satisfy (24); then the second term on the rhs of (23) 
would vanish. In this sense we may say that the condition (24) selects that 
distribution {p(1)} out of those allowing exact coding which is naturally, 
(i.e., trivially) the "neares t"  (because of minimum 1 (1)) to the actual 
distribution {p}. 

As a result, we have for I in (23) 

I = I (l~ + I(1) (29) 

where 1 (1) is minimum for a given actual, state and I (1~ refers to the 
"neares t"  exact code. 

4. S U M M A R Y  A N D  D I S C U S S I O N  

The starting premise of this study is that living systems cannot " r ead"  
thermodynamic quantities, but need as exact information on them as possible. 
The present investigation is confined to the Gibbs function output from a 
nucleotide pool. If the concentrations of the three types of nucleotides in a 
pool convey equal amounts of information on the corresponding Gibbs 
function differences, we say that the differences are exactly encoded. Such a 
situation must be adjusted by some mechanism selecting, by its design, a 
special subset of exact codes--the operationally defined exact codes. In living 
systems, equilibrium states of a particular reaction [see (17) and (18)] are 
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sufficient for such codes to exist. In the other states, then, only approximate 
codes are defined operationally, (20). The error associated with them can 
be simplified and minimized. A functional dependence between the approxi- 
mate and exact codes is thus avoided; it would restrict the "number  of 
degrees of f reedom" of the entire system and, moreover, an additional 
adjusting mechanism would be needed. 

In short, the coding relations essentially substitute for thermo- 
dynamic expressions like (1): since the kinetic response cannot " r ead"  
chemical potentials directly (being sensitive to concentrations only), the 
thermodynamic quantities must be introduced indirectly, by coding con- 
ditions. It is the reaction (18) and the equilibrium condition (17) that allow 
the circumvention of  the incompleteness of information conveyed by con- 
centrations. Once the Gibbs function differences are encoded, the Gibbs 
function output from the pool and the associated part of entropy production 
are encoded as well. 

It will be shown elsewhere ~5) that the theory predicts preferable values 
of the equilibrium constant K (1) and of the ratio K [-see (15) and (25)] if E and 
K/K ~t) are given. The quantities K ~1) and E have often been determined 
experimentally; it turns out that the calculated values of K ~) and of K agree 
closely with those found in real living systems. Also, the calculations show 
that the error measure I (~) tends to zero as E tends to unity (the maximum 
possible value). This behavior explains the well-known fact that in highly 
active living systems (in growing ones, for example) higher values of E are 
found (E ~ 0.8), whereas in less active systems Ehas  a value of  about 0.6-0.7 
or even lower. The theory can explain this on the basis of the assumption 
that highly active systems are very exacting as to the sensitivity and 
accuracy of regulation as well as of the overall kinetic response. With respect 
to the nucleotide pools, these requirements claim very good codes. Such 
codes, in turn, are accompanied by low values of I ~) and can exist only 
at higher values of  E. 
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